Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Proc Natl Acad Sci U S A ; 120(23): e2303509120, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20243539

ABSTRACT

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.retro and AAV6.2 vectors by intranasal instillation or intramuscular injection protected mice against high-titered SARS-CoV-2 infection. AAV and lentiviral vectored immunoprophylaxis was durable and was active against SARS-CoV-2 Omicron subvariants. The AAV vectors were also effective therapeutically when administered postinfection. Vectored immunoprophylaxis could be of value for immunocompromised individuals for whom vaccination is not practical and as a means to rapidly establish protection from infection. Unlike monoclonal antibody therapy, the approach is expected to remain active despite continued evolution viral variants.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , Immunization , Immunotherapy , Vaccination , Dependovirus/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use
2.
Nature ; 617(7961): 555-563, 2023 May.
Article in English | MEDLINE | ID: covidwho-2323608

ABSTRACT

An outbreak of acute hepatitis of unknown aetiology in children was reported in Scotland1 in April 2022 and has now been identified in 35 countries2. Several recent studies have suggested an association with human adenovirus with this outbreak, a virus not commonly associated with hepatitis. Here we report a detailed case-control investigation and find an association between adeno-associated virus 2 (AAV2) infection and host genetics in disease susceptibility. Using next-generation sequencing, PCR with reverse transcription, serology and in situ hybridization, we detected recent infection with AAV2 in plasma and liver samples in 26 out of 32 (81%) cases of hepatitis compared with 5 out of 74 (7%) of samples from unaffected individuals. Furthermore, AAV2 was detected within ballooned hepatocytes alongside a prominent T cell infiltrate in liver biopsy samples. In keeping with a CD4+ T-cell-mediated immune pathology, the human leukocyte antigen (HLA) class II HLA-DRB1*04:01 allele was identified in 25 out of 27 cases (93%) compared with a background frequency of 10 out of 64 (16%; P = 5.49 × 10-12). In summary, we report an outbreak of acute paediatric hepatitis associated with AAV2 infection (most likely acquired as a co-infection with human adenovirus that is usually required as a 'helper virus' to support AAV2 replication) and disease susceptibility related to HLA class II status.


Subject(s)
Adenovirus Infections, Human , Dependovirus , Hepatitis , Child , Humans , Acute Disease/epidemiology , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/virology , Alleles , Case-Control Studies , CD4-Positive T-Lymphocytes/immunology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/isolation & purification , Genetic Predisposition to Disease , Helper Viruses/isolation & purification , Hepatitis/epidemiology , Hepatitis/genetics , Hepatitis/virology , Hepatocytes/virology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Liver/virology
3.
Nature ; 617(7961): 471-472, 2023 May.
Article in English | MEDLINE | ID: covidwho-2326562
4.
Nature ; 617(7961): 574-580, 2023 May.
Article in English | MEDLINE | ID: covidwho-2326179

ABSTRACT

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Subject(s)
Adenovirus Infections, Human , Coinfection , Dependovirus , Hepatitis , Child , Humans , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/genetics , Dependovirus/isolation & purification , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Hepatitis/epidemiology , Hepatitis/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 6, Human/isolation & purification , Enterovirus A, Human/isolation & purification , Helper Viruses/isolation & purification
5.
BMJ ; 381: 793, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2270360

Subject(s)
Dependovirus , Hepatitis , Humans , Child
6.
Viruses ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2236069

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19) that has caused a pandemic with millions of human infections. There continues to be a pressing need to develop potential therapies and vaccines to inhibit SARS-CoV-2 infection to mitigate the ongoing pandemic. Epidemiological data from the current pandemic indicates that there may be sex-dependent differences in disease outcomes. To investigate these differences, we proposed to use common small animal species that are frequently used to model disease with viruses. However, common laboratory strains of mice are not readily infected by SARS-CoV-2 because of differences in the angiotensin-converting enzyme 2 (ACE2), the cellular receptor for the virus. To overcome this limitation, we transduced common laboratory accessible strains of mice of different sexes and age groups with a novel a triple AAV6 mutant, termed AAV6.2FF, encoding either human ACE2 or luciferase via intranasal administration to promote expression in the lung and nasal turbinates. Infection of AAV-hACE2-transduced mice with SARS-CoV-2 resulted in high viral titers in the lungs and nasal turbinates, establishment of an IgM and IgG antibody response, and modulation of lung and nasal turbinate cytokine profiles. There were insignificant differences in infection characteristics between age groups and sex-related differences; however, there were significant strain-related differences between BALB/c vs. C57BL/6 mice. We show that AAV-hACE2-transduced mice are a useful for determining immune responses and for potential evaluation of SARS-CoV-2 vaccines and antiviral therapies, and this study serves as a model for the utility of this approach to rapidly develop small-animal models for emerging viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Mice, Inbred C57BL , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
7.
Mol Ther ; 30(9): 2875-2876, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2031749
8.
Am J Ophthalmol ; 241: 262-271, 2022 09.
Article in English | MEDLINE | ID: covidwho-2014767

ABSTRACT

PURPOSE: To assess safety of gene therapy in G11778A Leber hereditary optic neuropathy (LHON). DESIGN: Phase 1 clinical trial. METHODS: Setting: single institution. PARTICIPANTS: Patients with G11778A LHON and chronic bilateral visual loss >12 months (group 1, n = 11), acute bilateral visual loss <12 months (group 2, n = 9), or unilateral visual loss (group 3, n = 8). INTERVENTION: unilateral intravitreal AAV2(Y444,500,730F)-P1ND4v2 injection with low, medium, high, and higher doses to worse eye for groups 1 and 2 and better eye for group 3. OUTCOME MEASURES: Best-corrected visual acuity (BCVA), adverse events, and vector antibody responses. Mean follow-up was 24 months (range, 12-36 months); BCVAs were compared with a published prospective natural history cohort with designated surrogate study and fellow eyes. RESULTS: Incident uveitis (8 of 28, 29%), the only vector-related adverse event, resulted in no attributable vision sequelae and was related to vector dose: 5 of 7 (71%) higher-dose eyes vs 3 of 21 (14%) low-, medium-, or high-dose eyes (P < .001). Incident uveitis requiring treatment was associated with increased serum AAV2 neutralizing antibody titers (p=0.007) but not serum AAV2 polymerase chain reaction. Improvements of ≥15-letter BCVA occurred in some treated and fellow eyes of groups 1 and 2 and some surrogate study and fellow eyes of natural history subjects. All study eyes (BCVA ≥20/40) in group 3 lost ≥15 letters within the first year despite treatment. CONCLUSIONS: G11778A LHON gene therapy has a favorable safety profile. Our results suggest that if there is an efficacy effect, it is likely small and not dose related. Demonstration of efficacy requires randomization of patients to a group not receiving vector in either eye.


Subject(s)
Optic Atrophy, Hereditary, Leber , DNA, Mitochondrial/genetics , Dependovirus/genetics , Dependovirus/metabolism , Electroretinography , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors , Humans , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Prospective Studies , Retinal Ganglion Cells , Tomography, Optical Coherence , Vision Disorders/etiology , Visual Acuity , Visual Fields
9.
Science ; 377(6605): 454-455, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-2008762
10.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1860155

ABSTRACT

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Dependovirus/genetics , Humans , Macaca , Mice , Pandemics/prevention & control , SARS-CoV-2/genetics
11.
Front Cell Infect Microbiol ; 12: 802147, 2022.
Article in English | MEDLINE | ID: covidwho-1753359

ABSTRACT

Owing to the outbreak of the novel coronavirus (SARS-CoV-2) worldwide at the end of 2019, the development of a SARS-CoV-2 vaccine became an urgent need. In this study, we developed a type 9 adeno-associated virus vectored vaccine candidate expressing a dimeric receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S protein) and evaluated its immunogenicity in a murine model. The vaccine candidate, named AAV9-RBD virus, was constructed by inserting a signal peptide to the N-terminus of two copies of RBD, spaced by a linker, into the genome of a type 9 adeno-associated virus. In vitro assays showed that HeLa cells infected by the recombinant AAV virus expressed high levels of the recombinant RBD protein, mostly found in the cell culture supernatant. The recombinant AAV9-RBD virus was cultured and purified. The genome titer of the purified recombinant AAV9-RBD virus was determined to be 2.4 × 1013 genome copies/mL (GC/mL) by Q-PCR. Balb/c mice were immunized with the virus by intramuscular injection or nasal drip administration. Eight weeks after immunization, neutralizing antibodies against the new coronavirus pseudovirus were detected in the sera of all mice; the mean neutralizing antibody EC50 values were 517.7 ± 292.1 (n=10) and 682.8 ± 454.0 (n=10) in the intramuscular injection group and nasal drip group, respectively. The results of this study showed that the recombinant AAV9-RBD virus may be used for the development of a SARS-CoV-2 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , COVID-19/prevention & control , Dependovirus/genetics , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
12.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: covidwho-1667342

ABSTRACT

The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Hepatitis Antibodies/blood , Hepatitis E virus/immunology , Muscles/virology , Viral Proteins/immunology , Absorption, Physiological , Animals , Dependovirus/immunology , Female , Hepatitis Antibodies/immunology , Hepatitis E virus/genetics , Mice , Mice, Inbred BALB C , Viral Proteins/administration & dosage , Viral Proteins/genetics
13.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1621101

ABSTRACT

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/prevention & control , Dependovirus , Mice , Pandemics , RNA Interference , RNA, Small Interfering/genetics , SARS-CoV-2/genetics
14.
Mol Ther ; 30(5): 1994-2004, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1612107

ABSTRACT

Adeno-associated virus (AAV)-mediated gene delivery holds great promise for gene therapy. However, the non-invasive delivery of AAV for lung tissues has not been adequately established. Here, we revealed that the intratracheal administration of an appropriate amount of AAV2/8 predominantly targets lung tissue. AAV-mediated gene delivery that we used in this study induced the expression of the desired protein in lung parenchymal cells, including alveolar type II cells. We harnessed the technique to develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-susceptible mice. Three kinds of immune function-relevant gene knockout (KO) mice were transduced with AAV encoding human angiotensin-converting enzyme 2 (hACE2) and then injected with SARS-CoV-2. Among these mice, type I interferon receptor (IFNAR) KO mice showed increased viral titer in the lungs compared to that in the other KO mice. Moreover, nucleocapsid protein of SARS-CoV-2 and multiple lesions in the trachea and lung were observed in AAV-hACE2-transduced, SARS-CoV-2-infected IFNAR KO mice, indicating the involvement of type I interferon signaling in the protection of SARS-CoV-2. In this study, we demonstrate the ease and rapidness of the intratracheal administration of AAV for targeting lung tissue in mice, and this can be used to study diverse pulmonary diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/therapy , Dependovirus/genetics , Disease Models, Animal , Disease Susceptibility , Lung/pathology , Mice , Mice, Transgenic , SARS-CoV-2/genetics
15.
Nucleic Acid Ther ; 31(5): 321-323, 2021 10.
Article in English | MEDLINE | ID: covidwho-1467290

ABSTRACT

The utilization of the mRNA-based Pfizer-BioNTech and Moderna coronavirus disease 2019 (COVID-19) vaccines represents the culmination of many years of nonviral nucleic acid delivery, but more importantly, they signify a massive clinical scientific success. Scientists working in the area of nucleic acid delivery using lipid nanoparticles will undoubtedly be energized by the success of these vaccines and begin to collect much needed data in the realm of nonviral-based RNA and DNA delivery, specifically, the use of lipid nanoparticles, the immune response, safety, and efficacy. It is easily conceivable that in the future we can utilize these data to help streamline our approach for the delivery of DNA for gene therapy and regulatory RNAs for therapeutic and regenerative medicine (ie, wound repair) applications.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , DNA/pharmacokinetics , Gene Transfer Techniques , RNA, Messenger/pharmacokinetics , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Biotechnology/trends , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , DNA/chemistry , Data Mining , Dependovirus/genetics , Dependovirus/immunology , Humans , Liposomes/chemistry , Liposomes/pharmacokinetics , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Messenger/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
16.
Stem Cell Res Ther ; 11(1): 448, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-1388825

ABSTRACT

Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema. Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms. Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species; however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)-a model of human lung parenchyma generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6 serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-CoV-2 research.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Human Embryonic Stem Cells/cytology , Lung Diseases/therapy , Organoids/cytology , Cell Line , Dependovirus/immunology , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Lung/metabolism , Models, Biological , Parenchymal Tissue/cytology
17.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Article in English | MEDLINE | ID: covidwho-1352713

ABSTRACT

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Models, Animal , 3T3 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Chlorocebus aethiops , Dependovirus/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic , Vero Cells
18.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
19.
Front Immunol ; 12: 673699, 2021.
Article in English | MEDLINE | ID: covidwho-1325526

ABSTRACT

Conventional vaccinations and immunotherapies have encountered major roadblocks in preventing infectious diseases like HIV, influenza, and malaria. These challenges are due to the high genomic variation and immunomodulatory mechanisms inherent to these diseases. Passive transfer of broadly neutralizing antibodies may offer partial protection, but these treatments require repeated dosing. Some recombinant viral vectors, such as those based on lentiviruses and adeno-associated viruses (AAVs), can confer long-term transgene expression in the host after a single dose. Particularly, recombinant (r)AAVs have emerged as favorable vectors, given their high in vivo transduction efficiency, proven clinical efficacy, and low immunogenicity profiles. Hence, rAAVs are being explored to deliver recombinant antibodies to confer immunity against infections or to diminish the severity of disease. When used as a vaccination vector for the delivery of antigens, rAAVs enable de novo synthesis of foreign proteins with the conformation and topology that resemble those of natural pathogens. However, technical hurdles like pre-existing immunity to the rAAV capsid and production of anti-drug antibodies can reduce the efficacy of rAAV-vectored immunotherapies. This review summarizes rAAV-based prophylactic and therapeutic strategies developed against infectious diseases that are currently being tested in pre-clinical and clinical studies. Technical challenges and potential solutions will also be discussed.


Subject(s)
Communicable Diseases/therapy , Dependovirus , Genetic Vectors , Immunotherapy/methods , Humans , Vaccines
20.
Adv Mater ; 33(37): e2103221, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1321675

ABSTRACT

Liquid-phase electron microscopy (LP-EM) is an exciting new area in the materials imaging field, providing unprecedented views of molecular processes. Time-resolved insights from LP-EM studies are a strong complement to the remarkable results achievable with other high-resolution techniques. Here, the opportunities to expand LP-EM technology beyond 2D temporal assessments and into the 3D regime are described. The results show new structures and dynamic insights of human viruses contained in minute volumes of liquid while acquired in a rapid timeframe. To develop this strategy, adeno-associated virus (AAV) is used as a model system. AAV is a well-known gene therapy vehicle with current applications involving drug delivery and vaccine development for COVID-19. Improving the understanding of the physical properties of biological entities in a liquid state, as maintained in the human body, has broad societal implications for human health and disease.


Subject(s)
Cryoelectron Microscopy/methods , Dependovirus , Particle Size , COVID-19 , COVID-19 Vaccines , Drug Delivery Systems , Equipment Design , Genetic Therapy , HEK293 Cells/virology , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/chemistry , Materials Testing , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL